PROGETTO DOTTORATO DI RICERCA 2014:
Convertitori dc-dc ad elevata efficienza per l’ interfacciamento
di sorgenti di energia in sistemi di generazione distribuita

High Efficiency Interfacing DC-DC converters for distributed energy systems.

AGGIORNAMENTO DOPO IL PRIMO SEMESTRE

Giovedì 14 maggio 2015

Supervisore: prof. Giorgio Spiazzi
Dottorando: Davide Biadene
Considered Scenario

Renewable Energy Sources

Energy Storage

Grid Inverter

HV DC Bus

Interface DC/DC Converter

\[V_{PV} \]

\[V_{bus} \]

\[V_{grid} \]

\[V_{FC} \]

\[V_{ES} \]
Interface Topologies for RES

- **Proposed Solution**
 - No Multiple Maximum Power Points;
 - Maximum Available Power from each RES;
 - High Voltage Gain DC/DC Converter;
 - Possible Galvanic Isolation.

- **Characteristics**
 - No Multiple Maximum Power Points;
 - Maximum Available Power from each RES;
 - High Voltage Gain DC/DC Converter;
 - Possible Galvanic Isolation.

Unidirectional DC-DC Converters
- Single Active Bridge (SAB)
- Interleaved Boost with Coupled Inductors (IBC I)
IBCI Converter

Characteristics
- Mutual Inductors;
- Output Voltage Multiplier;
- Resonant Tank;
- Galvanic Isolation.

Advantages
- Small Input Current Ripple;
- Less Switch Voltage Stress;
- Improved Voltage Gain;
- Controlled Switching Losses.

Diagram
- Mutual Inductors
- Voltage Doubler
- Resonant Tank
IBCI Converter

- IBCI Converter Characterization
 - Steady State Analysis (for almost all interested operating modes):
 - State Trajectories
 - Switch Voltage and Current Stress
 - Mode Boundaries
 - Voltage Gain:
 - Function of duty-cycle, frequency.
 - Output Power.
IBCI Converter

• Validation of the theoretical analysis
 • Simulation via Simulink-Matlab
 • Prototyping
 • State Trajectories Comparison
 • Voltage Gain Comparison
 • Efficiency Comparison
Optimum Design

- Design Choices
 - Switching Frequency;
 - Magnetic Core and Windings:
 - Winding Layout,
 - Core Type and Material.

- Design Objectives
 - Efficiency;
 - Volume;
 - Power Density;
 - ...

Background & Experience

Converter Model

Loss Model

Design Choices
Efficiency Optimization

- **Switching Losses**
 - Due to the stored energy in the switch parasitic capacitance;
 - \propto Switching Frequency;
 - V-I superposition.

- **Magnetic Losses**
 - Magnetic cores and windings;
 - Different contributions:
 - Hysteresis Loss,
 - Classical Eddy Current Loss,
 - Excess Eddy Current Loss,
 - Relaxation Process.
 - Strongly Non Linear Behaviour;
 - Different detailed model approaches:
 - Steinmetz Equation (SE),
 - Generalized SE (GSE),
 - Improved GSE (iGSE),
 - Preisach Model.

Feasible Loss Model

- Magnetic Component and Winding Layout
- Switching Frequency
- Operating Mode
Conclusion

• **Addressed Issues**
 • Magnetic Materials:
 • comparison between different Loss Models proposed in literature,
 • Loss Measurement Methods.
 • IBCI Converter:
 • detailed steady-state analysis,
 • improved efficiency.

• **Future Issues**
 • Propose a Complete Design Procedure for DC/DC Converters,
 • Propose a feasible Magnetic Loss Model.