

Finanziato dall'Unione europea

NEST SPOKE 5

Network for Energy Sustainable Transition

REVIEW MEETING

May 30th 2023

Spoke 5 – Energy Conversion (UNIPD Team: P. Mattavelli, G. Spiazzi, N. Bianchi, A. Bevilacqua, L. Martinelli)

Participants

- Politecnico di Milano
- Università degli studi di Padova
- Università di Pisa
- Università Napoli Federico II
- Politecnico di Bari
- Università degli studi di Bologna
- Università di Roma, La Sapienza
- Nuovo Pignone Tecnologie
- ldea75

Task 5.1.1 - Integration of AC interface by means of bidirectional GaN devices

Integration with AC front-end:

- Option 1: use an AC-DC + DC/AC stage.
- Option 2: use an AC/AC stage exploiting structures of the kind shown on the right.

Task 5.1.1 - Multi-port converters for Soft-Open Point applications

SOP based on back-to-back VSI

Task 5.1.2 – Grid friendly Power Electronics Converters

- Desired features:
 - **Dissipative and damped operation** in presence of dynamic transients
 - **islanded capability**: supports the grid voltage by output power adaptation via *P-f*, *Q-V* droop characteristics.
 - grid-tied operation: makes the output power fixed to allow power control.
 - seamless transitions between the two operating modes.
 - unbalance compensation and unbalance load supply capability.

HEPN

m

 θ_m

 i_e

p

DC/DC

Hybrid-excited PM machine

 $\|v_{dq}\|$

 $v_d *$

abc

Rotor Winding

Rotor with PMs and excitation winding to modulate the rotor flux: geometry optimization, control and tests

 ω_e

 $1/p \blacktriangleleft$

d/dt

 ω_m

Multi-three-phase machines

Task 5.1.4 - Integrated dc-dc converters for energy scavenging

Plan of the activities

- Review of the state-of-the-art
- Definition of the architecture of the integrated dc-dc converter for energy scavenging
- Transistor-level design and simulation of the dc-dc converter
- Layout implementation of the dc-dc converter; chip tape-out
- Experimental characterization of the developed prototypes

Task 5.1.5 – Energy Conversion for wave applications – HIL tests in wave lab

Missione 4 • Istruzione e Ricerca

Spoke 5 – Timing

Prof. Giampaolo Manzolini Politecnico di Milano

1 st year - Identification	2 nd year - Design	3 rd year - Testing
Electric conversion		
	Thermal conversion	
	Energy systems	
1 st year - Selection	2 nd vear - Definition	3 rd year - Application
Artificial intelligence, big data and digital twin		