Grid-optimized vanadium redox flow batteries: architecture, interconnection and economic factors

ABSTRACT:
This project regards the development of advanced Vanadium Redox Flow Batteries and their operation connected to an electric grid. It aims at improving their technology under different aspects, in order to reduce some drawbacks and make them more competitive in the stationary energy storage market.
Energy storage (ES) is expanding dramatically and forecasts indicate that it will continue on this route in the coming years [1], particularly as regards batteries, because of their wide power and energy scalability, site versatility, very limited environmental impact, modularity, static structure, and ease of operation (Fig 1) [2]. In recent years, Redox Flow Batteries (RFBs) have emerged as strong competitors for stationary storage, particularly after the construction of largest battery ever, sized 200 MW and 800 MWh, resorting to the Vanadium FRB (VRFB) technology in China. VRFBs use liquid electrolytes which are circulated into the stack, made of several electrochemical cells, from tanks by means of pumps (Fig 2, 3). In this way they have the unique advantage among batteries that power and energy are independently sized. They also present other very competitive features, such as good round-trip efficiency (>70%), long charge/discharge cycle life (>15,000 cycles) and low levelized cost of energy (LCE, ca. 18 C€/kWh/cycles) [3]. Nevertheless, VRFB also present some weaknesses which hinder their commercial success, particularly in large size systems. This project focuses on some of these limitations and aims at reducing them while tailoring the device performance to advanced grid services (e.g. for smart grids, microgrids, smart grids, hybrid grids, multimodal grids, …) so as to achieve an improvement in performance that can help promoting the full exploitation of the technology.
Economic analyses will be developed to address the development toward highly competitive architectures and grid applications.

PUBBLICAZIONI:
1. M. Guarnieri, A. Trovò, F. Picano, Enhancing the efficiency of kW-class vanadium redox flow batteries by flow factor modulation: An experimental method, Applied Energy, 262 (2020): 114532. DOI: 10.1016/j.apenergy.2020.114532. IF=8.56
2. D. Maggiolo, F. Picano, F. Zanini, S. Carmignato, M. Guarnieri, S. Sasic, H. Ström, Solute transport and reaction in porous electrodes at high Schmidt numbers, Journal of Fluid Mechanics, 896 (2020) A13 1-28. DOI: 10.1017/jfm.2020.344. IF=3.35
3. N. Poli, M. Schäffer, A. Trovò, J. Noack, M. Guarnieri, P. Fischer, Novel electrolyte rebalancing method for vanadium redox flow batteries, Chemical Engineering Journal, 405 (2021), # 126583. DOI: 10.1016/j.cej.2020.126583. IF=10.65
4. Eduardo Sanchez-Diez, Edgar Ventosa, M. Guarnieri, Andrea Trovò, Cristina Flox, Rebeca Marcilla, Francesca Soavi, Petr Mazur, Estibaliz Aranzabe, Raquel Ferret, Redox flow batteries: status and perspective towards sustainable stationary energy storage, Journal of Power Sources, 481 (2021) 228804. DOI: 10.1016/j.jpowsour.2020.228804. IF=8.25
5. A. Trovò, P. Alotto, M. Giomo, F. Moro, M. Guarnieri, A validated dynamical model of a kW-class Vanadium Redox Flow Battery, Mathematics and Computers in Simulation, 183 (2021) 66-77. DOI: 10.1016/j.matcom.2019.12.011. IF=1.62
6. A. Trovò, M. Guarnieri, Standby thermal management system for a kW-class vanadium redox flow battery, Energy Conversion and Management, 226, (2021): 113510. DOI:10.1016/j.enconman.2020.113510. IF=8.21
7. A. Kusoglu, K. Vezzù, G.A. Hegde, G. Nawn, A.R. Motz, H.N. Sarode, G.M. Haugen, Y. Yang, S. Seifert, M.A. Yandrasits, S. Hamrock, C.M. Maupin, A.Z. Weber, V. Di Noto, A.M. Herring. Transport and Morphology of a Proton Exchange Membrane Based on a Doubly Functionalized Perfluorosulfonic Imide Side Chain Perflourinated Polymer, Chem. Mater. 32, 38-59 (2020). DOI:10.1021/acs.chemmater.8b05012. IF=9.57
8. K. Vezzù, G. Nawn, E. Negro, G. Crivellaro, J. W. Park, R. Wycisk, P.N. Pintauro, V. Di Noto. Electric Response and Conductivity Mechanism of Blended Polyvinylidene Fluoride/Nafion Electrospun Nanofibers, J. Am. Chem. Soc. 142, 801-814 (2020). DOI: 10.1021/jacs.9b09061 IF=14.61
9. M. Castellini, F. Menoncin, M. Moretto, S. Vergalli. Photovoltaic Smart Grids in the Prosumers Investment Decisions: A Real Option Model, Journal of Economic Dynamics and Control (2020) doi.org/10.1016/j.jedc.2020.103988. IF=1.20
10. A. Trovò, M. Guarnieri. Battery management system with testing protocols for kW-class vanadium redox flow batteries, Proc 2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES), vol. 1, pp. 33–38, Cagliari 1–3 Sept. 2020. DOI: 10.1109/IESES45645.2020.9210697.
11. A. Trovò, W. Zamboni, M. Guarnieri. Multichannel Electrochemical Impedance Spectroscopy and Equivalent Circuit Synthesis of a Large-Scale Vanadium Redox Flow Battery, J Power Sources, submitted 30-12-2020. Accepted 18-01-2021. IF=8.25
12. Y. Zhang, G. Spiazzi, S. Buso, T. Caldognetto. MIMO control of a high-step-up isolated bidirectional dc-dc converter, IEEE Transactions on Industrial Electronics. Submitted.
13. A. Trovò, V. Di Noto, J. Epoupa, C. Gambaro, M. Guarnieri, Fast time-domain response of kW-class vanadium redox flow batteries, IEEE Trans Sustainable Energy, ready for submission.

Congress presentations
14. A. Trovò, N. Poli, M. Guarnieri, Dynamic Response Analysis on a 9 kW VRFB Test Facility, Abstract #138652, PRIME Conference, online, October 4-9, 2020.
15. N. Poli, M. Schäffer, A. Trovò, J. Noack, M. Guarnieri, and P. Fischer, An Electrolyte Rebalancing Procedure for Vanadium Redox Flow Batteries, Abstract #142732, PRIME Conference, online, October 4-9, 2020.
Patents
16. Guarnieri M., Trovò, A.: Sistema di sicurezza per il controllo millibarico della pressione in atmosfera inerte per soluzioni liquide ad alta reattività”, “Safety apparatus for millibaric pressure control in inert atmosphere for high reactivity liquid solution, and tank and flow battery comprising such safety apparatus, domanda internazionale n. WO/2020/170125, depositata il 18.02.2020, pubblicata il 27.08.2020.
17. Andrea Trovò, Massimo Guarnieri, Battery Management System (BMS) con protocolli di collaudo e controllo termico per Batterie a Flusso di Vanadio. Procedura UNIPD avviata il 08/01/2020. Domanda di brevetto italiana n. 102020000005263 depositata al MISE 11/03/2020. Valutazione positive MISE del 02/12/2020.
18. Andrea Trovò, Francesco Picano, Massimo Guarnieri (2019): State of charge management tank for redox flow battery. Procedura UNIPD avviata il 19/03/2020. Domanda di brevetto italiano n. 102020000016600, depositata al MISE il 09/07/2020.

ATTIVITA'

TITOLOTIPOLOGIA DI FINANZIAMENTO
Ottimizzazione di sistemi di accumulo con tecnologia VRFBAssegno di ricerca
Vincitore
Nicola Poli